
Flickr : Web Services
Cal Henderson



What is Flickr?

• Photo sharing website (flickr.com)
• The place to store digital photos
• The centre of a big distributed 

system
• A set of open APIs



What the heck are ‘Web Services’?

• The future of the Internet!!!1

• Really just buzzwords



Web services in a nutshell

Serve
r

Business
Logic

Interface

Client

Interface UI
Transport



Web services in a nutshell

Serve
r

Business
Logic

Interface

Client

Interface UI
Transport

Web Server Web BrowserHTTP



Web services in a nutshell

Serve
r

Business
Logic

Interface

Client

Interface UI
Transport

Web Server ApplicationXML-RPC



Web services in a nutshell

Serve
r

Business
Logic

Interface

Client

Interface UI
Transport

Web Server Java ProgrammersSOAP



Why should I care?

• You can avoid code reuse

• While offering multiple services…



Web services

Serve
r

Business
Logic

Interface Web Browsers
HTTP

Interface

Interface

Email Clients
Email

Web Apps
REST

Client
s



Web services

Serve
r

Business
Logic

Interface Web Browsers
HTTP

Interface

Interface

Email Clients
Email

Web Apps
REST

Client
s

People get 
very excited 

about this part



Ok, I get that bit

• Give me a real example!

• Aren’t you supposed to be talking 
about Flickr?



Flickr’s Logical Architecture

Page Logic

Business/Application Logic

DatabasePhoto Storage

API Logic

EndpointsTemplates

Users

3rd Party Apps Flickr Apps

Node Service

Flickr.comEmail

Parse
r



Flickr’s Physical Architecture

Web Servers

Database Servers Node Servers

Static Servers

Users

Metadata Servers



But seriously…

• We only care about PHP!

• So where does Flickr use it?



PHP is at the core of Flickr

Page Logic

Business/Application Logic

DatabasePhoto Storage

API Logic

EndpointsTemplates

Users

3rd Party Apps Flickr Apps

Node Service

Flickr.comEmail

Parse
r



Ok, ok – what besides PHP?

• Smarty for templating
• PEAR for XML and Email parsing
• Java for…

– Controlling ImageMagick (image processing)
– Storage metadata
– The node service

• MySQL (4.0 / InnoDb)
• Perl for deployment & testing tools
• Apache 2, Redhat, etc. etc.



Medium sized application

• Small team (3 programmers until recently)
– 1 PHP, 1 Flash/DHTML, 1 Java

• >60,000 lines of PHP code
– >80 smarty extensions

• >60,000 lines of templates
• >250,000 users
• >3,500,000 photos
• >50,000,000 page views per month
• Growing fast

– Like, really fast
• So these stats are out of date by now



Thinking outside the web app

• Services
– Atom/RSS/RDF Feeds
– APIs

• SOAP
• XML-RPC
• REST
• We love PEAR::XML::Tree



More services

• Email interface
– Postfix
– PHP
– PEAR::Mail::mimeDecode

• FTP
• Uploading API
• Authentication API
• Unicode

– (Not really a service, but common to all Flickr services)



Even more services

• Real time application
– The “node service”

• ‘Cool’ flash apps
– Which use the REST APIs

• Blogging APIs
– Blogger API (1 & 2)
– Metaweblog API
– Atom
– LiveJournal



APIs are simple!

• Modeled on XML-RPC (sort of)
• Method calls with XML responses
• Named arguments (key/name pairs)

– Tricky in WebServices.framework on Mac OS X

• SOAP, XML-RPC and REST are just transports
• PHP endpoints mean we can use the same application 

logic as the website
– Endpoints talk to the business logic using PHP function calls

• Essentially a really fast transport



XML isn’t simple :(

• PHP 4 doesn’t have good a XML parser
– PHP 5 is new and scares me

• (and it wasn’t out when we started)

• Expat is cool though (PEAR::XML::Parser)
• Why doesn’t PEAR have XPath?

– Because PEAR is stupid!
– PHP 4 sucks!
– Actually, PHPXPath rocks

• http://phpxpath.sourceforge.net/



Creating API methods

• Stateless method-call APIs are easy to extend
– They don’t affect each other

• Adding a method requires no knowledge of the transport
– We just get passed arguments and return XML
– The transport layer hides all that junk

• Adding a method once makes it available to all the 
interfaces

• Self documenting – method dispatch requires a list of 
methods
– Because everyone hates writing documentation



Red-Hot Unicode Action

• UTF-8 pages

• CJKV support

• It’s really cool





Unicode for all

• It’s really easy
– Don’t need PHP support
– Don’t need MySQL support
– Just need the right HTTP headers
– UTF-8 is 7-bit transparent

• Just don’t mess with high characters
– Don’t use HtmlEntities()!

» Or |escape in Smarty

• But bear in mind…
• JavaScript has patchy Unicode support
• People using your APIs might be stupid

– Some of them ARE stupid, guaranteed



Scaling the beast

• Why PHP is great
• MySQL scaling
• Search scaling
• Horizontal scaling



But first…

• Why do we need to scale?

– There are a lot of people on the Internet
– They all want to use our “web services”
– Whether they know it yet or not



Why PHP is great

• Stateless
– We can bounce people around servers
– Everything is stored in the database
– Even the smarty cache
– “Shared nothing”

• (so long as we avoid PHP sessions)

• But what this really means…
– …is we just have to deal with scaling elsewhere



A MySQL Scaling Haiku

• Database server slow
• Load of over two hundred
• Replication wins!



MySQL Replication

• But it only gives you more 
SELECT’s

• Else you need to partition 
vertically

• Re-architecting sucks :(



Looking at usage

• But really, we SELECT much 
more than anything else
–A snapshot says

• SELECT’s 44m
• INSERT’s 1.3m
• UPDATE’s 1.7m
• DELETE’s 0.3m

• 19 SELECT’s for each IUD



Replication is really cool

• A bunch of slave servers handle 
all the SELECT’s

• A single master handles IUD’s
• We can scale horizontally, at least 

for a while.



Searching

• A simple text search
• We were using RLIKE
• Then switched to LIKE
• Then disabled it all together



FULLTEXT Indexes

• FULLTEXT saves the day!
• But they’re only supported on 

MyISAM tables
• And we use InnoDb for locking
• We’re doomed :(



But wait!

• Partial replication saves the day

• Replicate the portion of the database we want to search 
• But change the table types on the slave to MyISAM
• It can keep up because it’s only handling IUD’s on a 

couple of tables
• And we can reduce the IUD’s with a little bit of vertical 

partitioning



JOIN’s are slow

• “Normalised data is for sissies”
• Erm,
• “Selective de-normalisation can be a big win”

• Keep multiple copies of data around
• Makes searching faster
• Have to ensure consistency in the application logic

• For instance, have a concat’d field containing a bunch of 
child-row data, just for searching.



Our current setup

Slave Farm

DB1
Master

IUD’s

SELECT’
s

Search Slave 
Farm

Search
SELECT’
s

DB3
Main Search

slave

DB2
Main Slave



Our current, current setup

Slave Farm

DB1
Master

IUD’s

SELECT’
s

Search Slave 
Farm

Search
SELECT’
s

DB3
Main Search

slave

DB2
Main Slave

Slave Farm

DB4
Master

IUD’s

SELECT’
s

DB5
Main Slave

Main Cluster
Aux Cluster

Search Cluster



Horizontal scaling

• At the core of our design
• Just add hardware!
• Inexpensive
• Not exponential
• Avoid redesigns/re-architectures



Talking to the Node Service

• Just another service with an API
– But just internal at the moment

• Everyone speaks XML (badly)
• Just TCP/IP - fsockopen()
• We’re issuing commands, not requesting data, so we 

don’t bother to parse the response
– Just substring search for state=“ok”

– This only works for a simple protocol



Still talking to the Node Service

•Don’t rely on it!
– Check the connection was established
– Use a connection timeout
– Use an IO timeout!



RSS / Atom / RDF

• Different formats
– (all quite bad)

• We’re generating a lot of different feeds
• Abstract the difference away using templates
• No good way to do private feeds. Why is nobody 

working on this? (WSSE maybe?)
– Most of the feed readers (including bloglines.com) support basic 

HTTP Auth
• Easy to implement in PHP

– We love PHP
» It’s great!



Receiving email

• We want users to be able to email photos to Flickr
• Get postfix to pipe each mail to a PHP script
• Parse the mail and find any photos

• Cellular phone companies hate you
• Lots of mailers are retarded

– Photos as text/plain attachments
– Segments out of order
– No mime types
– UUEncoded and mime-less



Processing email

• PEAR to the rescue
• Mail::mime_decode

– With some patches
• UUEncoding
• Relax the address atom parser

• We need to convert character sets
– ICONV loves you



Upload via FTP

• PHP isn’t so great at being a daemon
– PHP4, I mean. Maybe PHP 5 is great

• Leaks memory like a sieve
• No (easy) threads
• Java to the rescue
• Java just acts as an FTPd and passes all uploaded files 

to PHP for processing
– This isn’t actually public

• Not my idea
– Bricolage does this I think. Maybe Zope?



Blogs

• Why does everyone loves blogs so much?
• Only a few APIs really

– Blogger
– Metaweblog
– Blogger2
– Movable Type
– Atom
– Live Journal



It’s all broken

• Lots of blog software has broken interfaces
• It’s a support nightmare
• Manila is tricky
• But it all works, more or less
• Abstracted in the application logic

• We just call blogs_post_message();

• And so can you, via the API



Back to those APIs

• We opened up the Flickr APIs a few months ago

• Programmers mainly build tools for other programmers
• We now have Perl, python, PHP, ActionScript, 

XMLHTTP, .NET, Objective-C, C++, C and Ruby 
interface libraries

• But also a few actual applications



Flickr Rainbow



Tag Wallpaper



iPhoto Plugin

• We developed a Mac uploader
• But it wasn’t great
• A user developed an iPhoto plugin
• It was great

• APIs encourage people to do your work 
for you



Flickr Carnivore

• Uses Carnivore PE
– Sniffs AIM traffic (amongst others) from the local net

• Calculates the most popular words of the moment

• Uses the Flickr API to display photos of those words

• It’s like a really invasive zeitgeist



Flickr Tivo

• A Tivo app which uses Flickr 
photos

• Just Type in some tags
• And your TV becomes a “digital 

picture frame”



So what next?

• Even more scaling
• PHP 5?
• MySQL 5?

–or NDB?
• Taking over the world



Flickr : Web Services
Cal Henderson



These slides are online
http://ludicorp.com/flickr/



Any Questions?


