
Web Services Mash-up : Flickr

Cal Henderson <cal@flickr.com>

O’Reilly Emerging Technology Conference
March 14-17, 2005

What’s Flickr?

• A website – flickr.com
• A photo-sharing application
• The centre of a big distributed system
• An open set of APIs

– flickr.com/services/

‘Traditional’ Photo Sites

Photos-of-Kittens.com

Original Photos Prints

Low-res viewing

Flickr

www.flickr.com

Original Photos Prints

Low-res viewingHi-res downloads

More Stuff

More Stuff

More stuff ?

• But how do we get more stuff into the
system

• And how do we get it out?
• And what ‘stuff’ do we want to be able

to get in and out?

Yes, More Stuff

• We want everything!
• We don’t yet know what’s great...

– People can use data in all sorts of cool
ways that you never thought of

– And people can send you data in cool
ways too

Web services to the rescue

• But what use are web services?
• The future of the Interwebnet!!!1
• A technology which enables geeks to

interface with your software

What’s this about a new way?

• Flickr has a bunch of ‘web services’
• RSS/Atom/RDF feeds output data in

nice reusable ways
• The Flickr API lets people get data in

and out of Flickr however they like

Logical Architecture

Page Logic

Business/Application Logic

DatabasePhoto Storage

API Logic

EndpointsTemplates

Users

3rd Party Apps Flickr Apps

Node Service

Flickr.comEmail

Parse
r

Logical Architecture

Page Logic

Business/Application Logic

DatabasePhoto Storage

API Logic

EndpointsTemplates

Users

3rd Party Apps Flickr Apps

Node Service

Flickr.comEmail

Parse
r

API Architecture

Endpoints

Users

Applications

HTTP Transport

Net / Local Transport

Protocol Voodoo

• Like any decent Internet ‘standard’,
there’s more than one

• A quick guide to the trendy ones flickr
supports…

SOAP

• Simple Object Access Protocol
• Now just SOAP

– (not so simple anymore)

• Google uses it

SOAP Response

<s:Envelope
 xmlns:s=“http://www.w3.org/2003/05/soap-envelope”
 xmlns:xsi=“http://www.w3.org/1999/XMLSchema-instance”
 xmlns:xsd=“http://www.w3.org/1999/XMLSchema”
>
 <s:Body>
 <x:FlickrResponse xmlns:x="urn:flickr">
 [escaped-xml-payload]
 </x:FlickrResponse>
 </s:Body>
</s:Envelope>

XML-RPC

• XML Remote Procedure Call
• Used by the blogging APIs
• Created by Dave Winer in 1998

– Because SOAP was taking a long time

XML-RPC Response

<methodResponse>
 <params>
 <param>
 <value>
 <string>
 [escaped-xml-payload]
 </string>
 </value>
 </param>
 </params>
</methodResponse>

REST

• Representational State Transfer
– Crazy name

• Thanks Roy Fielding at Apache

• It’s really simple
– Just XML over HTTP
– (Though purists say it’s only HTTP GET)

REST Response

<rsp stat="ok">
 [xml-payload]
</rsp>

Page Scraping

• Been around for ever
• HTML-over-HTTP
• Volatile interface
• Makes site owners angry
• Other protocols are for sissies

(possibly)

Offering Web Services

• Be transport agnostic
– Some people love SOAP, some love REST
– Make them all (somewhat) happy

• Beware of ‘shitty coders’

Performance Problems

• People can scrape your site and pull a
lot of pages in a short time

• This is bad
• But API abuse (even accidental) can be

a lot worse

An example

• Someone writes a trendy screensaver
app for Flickr which shows recent
photos

• It checks for new photos every 2
seconds

• A bunch of people download it

Danger!

• With 100 users, that’s 50 hits per
second (about 4.3 million in a day)

• If it’s making a particularly taxing
database call, it’s going to cause
problems

Possible solutions

• Incorporate caching into API bindings
• Enforce a policy

– Through API keys, etc.

• Cache at the host application level
• Monitor things closely

Authentication

• Authentication parameters as request
parameters
– ?username=cal&password=kittens

• HTTP Basic Auth
• HTTPS
• WSSE

What we have learned

• Be open
• Be protocol agnostic
• Be careful of abuse
• Be nice

